C2tescain

Tesca Technologies Pvt. Ltd.

Differential Amplifier

Generalized form of a differential amplifier with two inputs V_{1} \& V_{2}. The two identical transistors TR_{1} and TR_{2} are both biased at the same operating point with their emitters connected together and returned to the common point, $-\mathrm{V}_{\mathrm{EE}}$ by way of resistor $\mathrm{R} \varepsilon$

Differential mode input: Here two different input signals are connected as V_{1} and V_{2}. The output (V_{0}) is taken across only one transistor T_{1}. This type of circuit is output voltage of the circuit is given by:

$$
V_{0}=A\left(V_{1}=V_{2}\right)
$$

If $V_{1}=V_{2}$ in magnitude, but opposite in signs, then we get:

$$
\mathrm{V}_{0}=\mathrm{A}\left[\mathrm{~V}_{1}=\mathrm{V}_{2}\right]=2 \mathrm{AV}
$$

Common mode input: If two input signal are applied at two inputs such that $V_{1}=V_{2}$ both in magnitudes and polarity, then $\mathrm{V}_{0}=\mathrm{A}\left(\mathrm{V}_{1}=\mathrm{V}_{2}\right)=\mathrm{A}\left(\mathrm{V}_{1}=\mathrm{V}_{2}\right)=0$

Operational Amplifier

An operational amplifier (OPAMP) is an electronic circuit, which uses differential amplifier inside it. It is a high gain directly coupled amplifier. The operational amplifier is used for different mathematical operations like addition subtraction, integration, differentiation and A/D
conversion, comparisonetc. conversion, comparison etc.

$$
\text { Inverting } I / P_{\text {IV }}^{0} \rightarrow
$$

Characteristics of Ideal Operational Amplifier:

* Its open loop gain infinite i.e. When feedback is not Its input resis infinite.
Its input resistance is infinite i.e. It does not absorb any current from the input signal.
So, its bias current is zero.
* Its CMRR is infinite.
* Its input-offset voltage is zero.

Its offset current is zero i.e. The difference between bias current s is zero

* It can amplify any signal having any frequency between bias currents is zero.
* It can amplify any signal having any frequency i.e. From DC (zero frequency) to AC (infinite frequency). Its propagation delay is zero.

$\stackrel{36197}{\text { Operational Amplifie }}$
Operational Amplifier
Trainer

36245

Comparator

$\mu \mathrm{A}$-741 Operational Amplifier

Basically a three-terminal device which consists of two high impedance inputs, one is called the Inverting Input, marked with a negative or "minus" sign (-) and another is called the Non-Inpverting Input, marked with a positive or "plus" sing (+).

Inverting Amplifier

In inverting mode the input is applied to the inverting erminal of OPAMP.

Important Rule

No current flows into the input terminals
The differential input voltage is zero as $\mathrm{V}_{1}=\mathrm{V}_{2}=0$ (Virtual Earth)
Calculation of Closed Loop Gain

$=\frac{V_{\text {in }}-V_{\text {out }}}{R_{\text {in }}+R_{f}}$ Therefore, $i=\frac{\bar{V}_{\text {in }}-V_{2}}{R_{\text {in }}}=\frac{V_{2}-V_{\text {out }}}{R_{f}}$
$i=\frac{V_{\text {in }}}{R_{\text {in }}}-\frac{V_{2}}{R_{\text {in }}}=\frac{V_{2}}{R_{f}}-\frac{V_{\text {out }}}{R_{f}}$ so, $\frac{V_{\text {in }}}{R_{\text {in }}}=V_{2}\left[\frac{1}{R_{\text {in }}}+\frac{1}{R_{f}}\right]-\frac{V_{\text {out }}}{R_{f}}$
and as $i=\frac{V_{\text {in }}-0}{R_{\text {in }}}=\frac{0-V_{\text {out }}}{R_{f}} \frac{R_{f}}{R i n}=\frac{0-V_{\text {out }}}{V_{\text {in }}-0}$
the closed Loop Gain (Av) is given as, $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{f}}{R_{\text {in }}}$

$$
V_{\text {out }}=\frac{R_{f}}{R_{\text {in }}} \times V_{\text {in }}
$$

The negative sign in the equation indicates an inversion of the output signal with respect to the input as it is 180° out or phase. This is due to the feedback being negative in value.

Non-Inverting Amplifier

The input voltage signal, $\left(V_{\text {in }}\right)$ is applied directly to the non inverting $(+)$ input terminal.

Calculation of Closed Loop Gain

$$
V_{1}=\frac{R_{2}}{R_{2}+R_{F}} \times V_{\text {out }}
$$

Ideal Summing Point $V_{1}=V_{\text {in }}$
Voltage Gain, A_{v} is equal to $\frac{V_{\text {out }}}{V_{\text {in }}}$

$$
\text { Then, } A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{2}+R_{F}}{R_{2}}
$$

Transpose to give, $A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{R_{F}}{R_{2}}$

Summing Amplifier

$$
\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=-\left[\frac{\mathrm{V}_{1}}{\mathrm{R}_{\mathrm{in}}}+\frac{\mathrm{V}_{2}}{\mathrm{R}_{\mathrm{in}}}+\frac{\mathrm{V}_{3}}{\mathrm{R}_{\mathrm{in}}}\right]
$$

Inverting Equation: $V_{\text {out }}=-{ }_{R_{\text {in }}}^{R_{F}} \times V_{\text {in }}$

$$
\text { Then, }-\mathrm{V}_{\text {out }}=\left[\frac{R_{F}}{R_{\text {in }}} \mathrm{V}_{1}+\frac{R_{F}}{R_{\text {in }}} \mathrm{V}_{2}+\frac{R_{\mathrm{F}}}{R_{\text {in }}} V_{3}\right]
$$

Summing Amplifier Application

Differential Amplifier

Integrator Amplifier

$V_{o n t}=-\frac{1}{R_{n} C} \int_{0} V_{n} d t=-\int_{0}^{t} V_{n t} \frac{d t}{R_{n \cdot} C}=-\frac{1}{j \omega R C} V_{n}$
Differentiator Amplifier

Op-Amp Applications

Study of Schmitt's Trigger

Op-Amp Applications
Trainer

36331
AC/DC Sources

