

Operational Amplifier

Differential Amplifier

Generalized form of a differential amplifier with two inputs $V_1 \& V_2$. The two identical transistors TR_1 and TR_2 are both biased at the same operating point with their emitters connected together and returned to the common point, - V_{FF} by way of resistor R ϵ

Differential mode input: Here two different input signals are connected as V_1 and V_2 . The output (V_2) is taken across only one transistor T₁. This type of circuit is called differential input, single ended output mode. The output voltage of the circuit is given by:

 $V_{0} = A(V_{1} = V_{2})$

If $V_1 = V_2$ in magnitude, but opposite in signs, then we get:

$$V_0 = A[V_1 = V_2] = 2AV_1$$

Common mode input: If two input signal are applied at two inputs such that $V_1 = V_2$ both in magnitudes and polarity, then $V_0 = A(V_1 = V_2) = A(V_1 = V_2) = 0$

Operational Amplifier

An operational amplifier (OPAMP) is an electronic circuit, which uses differential amplifier inside it. It is a high gain directly coupled amplifier. The operational amplifier is used for different mathematical operations like addition subtraction, integration, differentiation and A/D conversion, comparison etc.

Characteristics of Ideal Operational Amplifier:

- used its gain is infinite.
- Its input resistance is infinite i.e. It does not absorb any current from the input signal.

- It can amplify any signal having any frequency between bias currents is zero.
- It can amplify any signal having any frequency i.e. From DC (zero frequency) to AC (infinite frequency).
- Its propagation delay is zero.

µA-741 Operational Amplifier

Basically a three-terminal device which consists of two high impedance inputs, one is called the Inverting Input, marked with a negative or "minus" sign (-) and another is called the Non-Inpverting Input, marked with a positive or "plus" sing (+).

Inverting Amplifier

In inverting mode the input is applied to the inverting terminal of OPAMP.

Important Rules

No current flows into the input terminals The differential input voltage is zero as $V_1 = V_2 = 0$ (Virtual Earth)

Calculation of Closed Loop Gain

The negative sign in the equation indicates an inversion of the output signal with respect to the input as it is 180° out or phase. This is due to the feedback being negative in value.

Non-Inverting Amplifier

$$I_F = I_1 + I_2 + I_3 = -\left[\frac{V_1}{R_{in}} + \frac{V_2}{R_{in}} + \frac{V_3}{R_{in}}\right]$$

Inverting Equation:
$$V_{out} = - \frac{R_F}{R_{in}} \times V_{in}$$

IT-2013, Ramchandrapura Indl. Area, Sitapura Extension, Jaipur-302022, India. Ph: +91-9829132777; +91-9413330765; Email: info@tesca.in; Web: www.tesca.in

Summing Amplifier Application