

33503C DIGITAL-ANALOG KIT is intended for elementary as well as advance training of Digital & Analog electronics. The trainer covers regular digital & analog circuits by solder-less interconnections on breadboard and as well as compatible with all optional modules, through use of 2mm brass terminals and patch cords. Clock generators, logic level input/output indicators and DC power supplies etc. are inbuilt. The unit housed in attractive enclosure is supplied with mains cord, patch cords, Instruction manual and Component Set.

Features:

Unique solder-less large size, spring loaded breadboard consisting of two **Bread Board**

Terminal Strips with 1280tie points and 4 Distribution Strips with 100 tie points

each, totaling to 1680 tie points. Size: 112mm x 170mm approx)

Fixed Power Supply +5 V, -5 V, +12 V, and -12 V 15-0-15V. Can be used as 15V. AC Supply

Fixed Clock 1Hz, 10Hz, 100 Hz, 1KHz, 10KHz, 100KHz, 1MHz.

Manual Pulser Switch: 1 independent buffered bounce free manual pulser (useful for freezing the action

of each stage of the counter after every clock pulse)

10 Logic Level Input 10 independent logic level inputs to select High / Low TTL levels, each with a LED

to indicate high / low status and termination

Logic Level Indicator : 10 independent buffered logic level indicators for High / Low status indication of

digital outputs.

Potentiometer 1 Potentiometer (10K) with terminals On Board Switches 2 Switches signal pole double through Logic Probe Logic level indicator for TTL/CMOS

Power $230 V \pm 10\%, 50 Hz$

Mains cord, Operating and Experimental manual, Red & Black patch cords (2mm Accessories

with Pin) 10 each, Red & Black patch cord (Pin to Pin) 10 each & Component Set

Instruction manual Strongly supported by detailed operating instructions

Experimental Coverage:

Analog

- 01. Study of Diodes in DC circuits
- 02. Study of Light Emitting Diodes in DC Circuits
- 03. Study of Half wave rectifier
- 04. Study of Full wave rectifier
- 05. Study of Zener Diode as a voltage regulator
- 06. Study of transistor series voltage regulator
- 07. Study of transistor shunt voltage regulator

Optional

- 08. Study of Low pass filter
- 09. Study of High pass filter
- 10. Study of band pass filter
- 11. Study of CE configuration of NPN transistor
- 12. Study of CB configuration of NPN transistor
- 13. Study of CE amplifier
- 14. Study of Monostable multivibrator using transistor
- 15. Study of Bistable multivibrator using transistor

Digital

- 01. Logic gates operation
- 02. To prove De-Morgan's theorem with Boolean logic equations
- 03. Binary to Gray code conversion
- 04. Gray code to Binary conversion
- 05. Binary to Excess-3 code conversion
- Binary Addition and Subtractor 06.
- 07. Binary Multiplier
- 08. EX-OR gate implementation
- 09. Application of EX-OR gate
- 10. Johnson Counter
- 11. To verify the dual nature of Logic Gates
- 12. Study of Flip-Flops RS, JK, D&T
- 13. Multiplexer and Demultiplexer
- 14. 4 Bit Binary up and down counter
- 15. Study of 8 to 3 Line Encoder
- Study of 3 to 8 Line Decoder
- 17. Study of Shift Register (SIPO)

Optional

- 18. CMOS-TTL Interfacing
- 19. Study of Crystal oscillator
- 20. Study of pulse stretcher circuit

Note: Specifications are subject to change.

Tesca Technologies Pvt. Ltd. Sit-2013, Ramchandrapura Industrial Area, Sitapura Extension,

Near Bombay Hospital, Vidhani Circle, Jaipur-302022, Rajasthan, India,

Tel: +91-9829132777; Email: info@tesca.in, tesca.technologies@gmail.com

Nebsite: www.tescaglobal.com

Optional Modules:

Apart from above given experimental coverage of 16 + 20 experiments on breadboard, customers can purchase these optional modules. These are ready to use modules with wired components & circuit schematic drawn on top compatible to use with Digital-Analog Lab.

Analog		Digital	
	tudy of Diodes in DC circuits		Logic gates operation
	tudy of Light Emitting Diodes in DC	38502	To prove De-Morgan's theorem with
	rcuits		Boolean logic equations
36003 St	tudy of Half wave rectifier	38503	Binary to Gray code conversion
	tudy of Full wave rectifier	38504	Gray code to Binary conversion
	tudy of Zener Diode as a voltage regulator	38505	Binary to Excess-3 code conversion
	tudy of transistor series voltage regulator	38506	Binary Adder and Subtractor
	tudy of transistor shunt voltage regulator	38507	Binary Multiplier
	tudy of Low pass filter	38508	EX-OR gate implementation
	tudy of High pass filter	38509	Application of EX-OR gate
	tudy of band pass filter	38510	Johnson Counter
	tudy of CE configuration of NPN transistor	38511	To verify the dual nature of Logic Gates
	tudy of CB configuration of NPN transistor	38512	Study of Flip-Flops RS, JK, D&T
36013 St	tudy of CE amplifier		Multiplexer and Demultiplexer
36014 St	tudy of Monostable multivibrator using		4 Bit Binary up and down counter
tra	ansistor		Study of 8 to 3 Line Encoder
36015 St	tudy of Bistable multivibrator using		Study of 3 to 8 Line Decoder
tra	ansistor		Study of Shift Register (SIPO)
36016 St	tudy of Astable multivibrator using		CMOS-TTL Interfacing
tra	ansistor		Study of Crystal oscillator
	tudy CB amplifier (PNP)		Study of pulse stretcher circuit
	tudy CC amplifier (PNP)	38521	3
36019 St	tudy Zener diode voltage regulator		Modulo 12 Counter By Direct Clearing
	tudy power supply having two zener		Decade counter of a 7-segment LED display
•	odes in series		Shift Register SISO and PIPO
	tudy dual polarity voltage regulated		Decimal to BCD Converter
	ıpply		Astable Multivibrator using Digital IC
	ot V / I of LED	38527	
	practically understood the operation		Monostable Multivibrator
	nift Register SISO and PIPO		Octal to binary Encoder
	study CE characteristics of PNP transistor		4 Bit Magnitude Comparator
	study CB characteristics of PNP	38531	Interface of TTL-IC to CMOS-IC & CMOS IC
	ansistor		to TTL-IC
	study CC characteristics of PNP		
	ansistor		
	tudy full wave dual supplies		
	ET characteristic		
	erify superposition theorem		
36031 Ve	erify thevonin's theorem		

Note: Specifications are subject to change.