

SPECIFICATIONS:

Clock and signal generation section

Sine wave

Fixed frequency
250Hz, 500Hz, 1 KHz, 2 Khz
Variable frequency
1Hz ~ 30Hz, 0 ~ 2 Vpp

Sampling clock

Frequency : 2 KHz, 4 KHz, 8 KHz, 16 KHz, 32

KHz, 64 KHz, 128 Khz

Duty cycle : 10 ~ 90% Selectable in steps of

10%

DC signal : 0 ~ 5 V

Transmitter clock frequency: 240 KHz fast modes

Transmitter frame frequency: 8 Khz

Carrier sine waves
: 500 KHz (0°), 1MHz (0°), 1MHz

 (180°)

Data pattern : 8-bit variable NRZ-L pattern

PRBS generator : 14-bit

Transmitter Section

 Analog signal sampling ,Sample and hold, Natural sampling, Flat-top sampling

4 channel analog time division multiplexing

Odd, even parity and hamming code generator

Pulse code modulation

ASK, FSK, PSK modulation

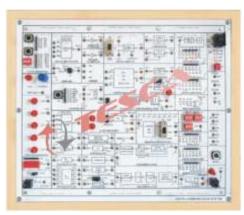
 Data encoding NRZ (L), NRZ (M), NRZ(S), Bi-phase (Manchester), Bi-phase (Mark), Bi-phase (Space), URZ, alternate mark inversion (AMI), uni-polar to bipolar and bipolar to uni-polar

• Delta / adaptive delta / sigma delta / CVSD modulation

Signal compression

PAM/PPM/PWM modulation

• Audio preamplifier with microphone interface


Receiver section

- 2nd order and 4th order low pass Butterworth filters
- 4 channel time division de-multiplexing
- PLL clock recovery
- Pulse code demodulation
- Odd, even parity and hamming code recovery
- Single bit error detection and correction
- Data decoding NRZ(L), NRZ(M), NRZ(S), Bi-phase (Manchester), Bi-phase (Mark), Bi-phase (Space), URZ, alternate mark inversion (AMI)
- ASK, FSK, PSK demodulation
- Delta/adaptive delta/sigma delta/CVSD demodulation
- Signal expander
- PAM/PPM/PWM demodulation
- Audio amplifier with headphone / speaker interface

Note: Specifications are subject to change.

Tesca Technologies Pvt. Ltd.

IT-2013, Ramchandrapura Industrial Area, Sitapura Extension, Near Bombay Hospital, Vidhani Circle, Jaipur-302022, Rajasthan, India, Tel: +91-141-2771791 / 2771792; Email: info@tesca.in, tesca.technologies@gmail.com Website: www.tesca.in

EXPERIMENTS:

Study of sampling techniques

Natural sampling, Sample and hold, Flat top sampling

Effect of various sampling frequencies and duty cycles

Effect of sampling frequency Effect of duty cycle

Effect of order of the low pass filter

Study of TDM with different receiver synchronization techniques

- Using the direct synchronization technique
- Clock recovery through PLI
- Clock recovery through threshold detector

Study of pulse code modulation and demodulation

- Direct synchronization technique
- Bit synchronization technique
- Frame synchronization technique

Effects of parities and hamming code on PCM data

 None parity, Even parity, Odd parity, Hamming code

Study of PRBS

Study of various data encoding and decoding techniques

- NRZ- L, NRZ- M, NRZ- S. 810-1. BIO-M, 810-S. URZ
- AMI encoding and decoding
- Unipolar to bipolar
- Bipolar to unipolar

Study of various carrier modulation and demodulation techniques

- ASK modulation and demodulation
- FSK modulation and demodulation
- PSK modulation and demodulation
- Study of delta modulation and demodulation
- Study of slope overload and increased integrator gain
- Study of adaptive delta modulation and demodulation
- Study of sigma delta modulation and demodulation
- Study of continuously variable slope detector modulation and demodulation.
- Study of companding system
- Voice communication
- Study of pulse width modulation and demodulation.
- Study of pulse position modulation and demodulation
- Switch faults

