

Features:

- * Low Cost for educational use with microwave bench
- * 8.2 to 12.4GHz X band measurement range
- * 0.1dB resolution
- * Digital Display on backlit LCD with bargraph
- * Wide range from +20dBm(100mW) to -30dBm(1uW)
- * dB relative mode
- * Measurement in dBm, mW, dBr, dBW, dBuW
- * Shock/Drop resistant Thermistor Sensor
- * In built X band source for scalar network analysis

Technical Specifications

Power Meter

I Ower Micter	
Frequency range	: 8.2GHz to 12.4 Ghz
Display	: 16X2 Backlit LCD
Power	: +20dBm to -30dBm
Measurement	: dBm, dBr, mW, dBW, dBuW With Digital
	Display
Resolution	: 0.1, 0.5 and 1dB
Offset	: For relative measurement
Level Indicator	: Digital display and Bar Graph
Power	: 100-240VAC, 47-63 Hz

Power Sensor

Frequency Range	: 8.2GHz to 12.4 GHz
Power range	: +20dBm to -30dBm
Compensation	: Temperature compensated thermistor
Cable	: Sensor/meter cable 3m

Microwave Source

Frequency	: 10.3 Ghz typical
Power level	: 1mW typical

List of Experiments

- 1. To learn different ways of measuring power.
- 2. To evaluate the accuracy of the power measurements.
- 3. To plot the power output of Gunn/Klystron Oscillator with supply voltage.
- To plot the power output of a Gunn/Klystron Oscillator with frequency.
- 5. Study of square law modulation and square law characteristics of a crystal detector.
- 6. To measure PIN modulator insertion loss & modulation depth.
- 7 To measure the accuracy of SWR meter reading.
- 8 To calculate the relationship between Q and bandwidth of resonance cavity.
- 9. To measure the insertion loss of the waveguide.
- 10. To measure the insertion loss in the main line of a directional coupler.
- 11. To measure the coupling factor of a directional coupler.
- 12. To measure the isolation & directivity of a directional coupler.
- 13. To measure the return loss of a unknown load.
- 14. To measure the decoupling between H and E arms of magic Tee.
- 15. To measure the insertion loss of the hybrid Tee.
- 16 To measure the return loss of H arm in a magic Tee.
- 17. To measure and plot the attenuation characteristics of variable attenuator.
- 18. To measure the attenuation of a fixed attenuator.
- 19 To measure the input SWR of attenuator.
- 20. To measure the gain of a pyramidal horn.
- 21. To plot the E and H Plane polar pattern of a antenna and compute the beamwidth.

Note: Specifications are subject to change.

Tesca Technologies Pvt. Ltd.

IT-2013, Ramchandrapura Industrial Area, Sitapura Extension, Near Bombay Hospital, Vidhani Circle, Jaipur-302022, Rajasthan, India, Tel: +91-141-2771791 / 2771792; Email: info@tesca.in, tesca.technologies@gmail.com Website: www.tesca.in

- 22. To measure the coupling coefficient of a waveguide E & H Plane Tee.
- 23. To measure the isolation of a waveguide E & H plane Tee.
- 24. To measure the input VSWR of a E & H plane Tee.
- 25. To study the operation of ferrite circulator and measure its insertion loss.
- 26. To measure isolation of a ferrite circulator.
- $27. \qquad \text{To measure the cross coupling of a circulator.}$
- 28. To study the variation of characteristics of ferrite circulator with frequency.

